歡迎來到你我貸客服熱線400-680-8888

大數據挖掘助力互聯網金融風險控制

2013-11-05 14:53:01
來源:網絡

【賽迪網訊】10月15日消息,互聯網金融發展的關鍵是風險控制,“風險控制”已然成為諸多互聯網金融企業能否長大的魔咒,這個不爭的事實像一座大山擺在眾多互聯網金融大佬與創業者的面前。為什么阿里金融能夠將它的網絡小貸不良率控制在不到1%,有膽量再貸多點嗎?大數據挖掘技術和互聯網金融的風險控制到底是什么關系?互聯網金融將怎樣建立有效的風險控制生態體系?本文將帶你揭開大數據挖掘與互聯網金融風險控制的神秘面紗。

最近互聯網金融圈不僅自己玩的很開心,而且還拉上了金融界甚至央行的大佬們一起玩的很開心。盡管讓互聯網金融企業頭痛的問題——央行征信系統不對市場開放,仍然沒有解決,但至少央行的態度明朗,支持互聯網金融的發展,并認為互聯網金融是傳統金融的有益補充。

生命的神奇之處在于它總能找到一個出口。作為新生事物的互聯網金融也不例外,在那扇門朝他們關閉的同時,他們卻找到了另外一扇窗。在亦步亦趨的探索中,他們中的大企業通過自身力量,小企業通過聯合的力量找到了適合自身發展的風險控制生態系統,正朝著良性和有序的方向發展,正如凱文凱利在他的《失控》中描述的群氓智慧那只無形的手。

互聯網金融掌握了可以顛覆傳統金融的風控技術

在不依賴央行征信系統的情況下,市場自發形成了各具特色的風險控制生態系統。大公司通過大數據挖掘,自建信用評級系統;小公司通過信息分享,借助第三方獲得信用評級咨詢服務。

互聯網金融企業的風控大致分為兩種模式,一種是類似于阿里的風控模式,他們通過自身系統大量的電商交易以及支付信息數據建立了封閉系統的信用評級和風控模型。另外一種則是眾多中小互聯網金融公司通過貢獻數據給一個中間征信機構,再分享征信信息。

央行的征信系統是通過商業銀行、其它社會機構上報的數據,結合身份認證中心的身份審核,提供給銀行系統信用查詢和提供給個人信用報告。但對于其它征信機構和互聯金融公司目前不提供直接查詢服務。2006年1月開通運行的央行征信系統,至2013年初,有大概8億人在其中有檔案。在這個8億人當中,只有不到3億人有過銀行或其他金融機構發生過借貸的記錄,其中存在大量沒有信貸記錄的個人。

而這些人卻有可能在央行征信系統外的其它機構、互聯網金融公司自己的數據系統中,存有相應的信貸記錄。市場上一些線下小貸公司、網絡信貸公司對于借貸人的信用評級信息需求非常旺盛,也因此催生了若干市場化征信公司,目前國內較大的具有代表性的市場化征信公司有幾家:如北京安融惠眾、上海資信、深圳鵬元等等。

從P2P網貸公司和一些線下小貸公司采集動態大數據,為互聯網金融企業提供重復借貸查詢、不良用戶信息查詢、信用等級查詢等多樣化服務是目前這些市場化的征信公司正在推進的工作。而隨著加入這個游戲規則的企業越來越多,這個由大量動態數據勾勒的信用圖譜也將越來越清晰。

互聯網海量大數據中與風控相關的數據

互聯網大數據海量且龐雜,充滿噪音,哪些大數據是互聯網金融企業風險控制官鐘愛的有價值的數據類型?下圖為大家揭示了互聯網海量大數據中與風控相關的數據,以及哪些企業或產品擁有這些數據。

(圖)風控相關大數據及代表企業或產品

利用電商大數據進行風控,阿里金融對于大數據的謀劃可謂非一日之功。在很多行業人士還在云里霧里的時候,阿里已經建立了相對完善的大數據挖掘系統。通過電商平臺阿里巴巴、淘寶、天貓、支付寶等積累的大量交易支付數據作為最基本的數據原料,再加上賣家自己提供的銷售數據、銀行流水、水電繳納甚至結婚證等情況作為輔助數據原料。所有信息匯總后,將數值輸入網絡行為評分模型,進行信用評級。

信用卡類網站的大數據同樣對互聯網金融的風險控制非常有價值。申請信用卡的年份、是否通過、授信額度、卡片種類;信用卡還款數額、對優惠信息的關注等都可以作為信用評級的參考數據。國內最具代表性的企業是成立于2005年,最早開展網上代理申請信用卡業務的“我愛卡”。其創始人涂志云和他的團隊又在2013年推出了信用風險管理平臺“信用寶”,利用“我愛卡”積累的數據和流量優勢,結合其早年的從事的FICO(費埃哲)風控模型,做互聯網金融小微貸款。

利用社交網站的大數據進行網絡借貸的典型是美國的LendingClub。Lendingclub于2007年5月24日在facebook上開張,通過在上面鑲嵌的一款應用搭建借貸雙方平臺。利用社交網絡關系數據和朋友之間的相互信任聚合人氣。借款人被分為若干信用等級,但是卻不必公布自己的信用歷史。

在國內,2013年阿里巴巴以5.86億美元購入新浪微博18%的股份,其用意給人很多遐想空間,獲得社交大數據,阿里完善了大數據類型。加上淘寶的水電煤繳費信息、信用卡還款信息、支付和交易信息,已然成為了數據全能選手。

小貸類網站積累的信貸大數據包括信貸額度、違約記錄等等。但單一企業缺陷在于數據的數量級別低和地域性太強。還有部分小貸網站平臺通過線下采集數據轉移到線上的方式來完善信用數據。這些特點決定了如果單兵作戰他們必定付出巨大成本。因此,貢獻數據,共享數據的模式正逐步被認可,抱團取暖勝過單打獨斗。其中有數據統計的全國小貸平臺有幾百家,全國性比較知名的有人人貸、拍拍貸、紅嶺和信用寶等。

第三方支付類平臺未來的機遇在于,未來有可能基于用戶的消費數據做信用分析。支付的方向、每月支付的額度、購買產品品牌都可以作為信用評級的重要參考數據。代表產品為易寶、財付通等。

生活服務類網站的大數據如水、電、煤氣、有線電視、電話、網絡費、物業費交納平臺則客觀真實地反映了個人的基本信息,是信用評級中一類重要的數據類型。代表產品為平安的“一賬通”。

互聯網金融風控大數據加工過程

(圖)大數據加工過程圖解析

如上圖所示,在進行數據處理之前,對業務的理解、對數據的理解非常重要,這決定了要選取哪些數據原料進行數據挖掘,在進入“數據工廠”之前的工作量通常要占到整個過程的60%以上。

在數據原料方面,越來越多的互聯網在線動態大數據被添加進來。例如一個虛假的借款申請人信息就可以通過分析網絡行為痕跡被識別出來,一個真實的互聯網用戶總會在網絡上留下蛛絲馬跡。對征信有用的數據的時效性也非常關鍵,通常被征信行業公認的有效的動態數據通常是從現在開始倒推24個月的數據。

通過獲得多渠道的大數據原料,利用數學運算和統計學的模型進行分析,從而評估出借款者的信用風險,典型的企業是美國的ZestFinance。這家企業的大部分員工是數據科學家,他們并不特別地依賴于信用擔保行業,用大數據分析進行風險控制是ZestFinance的核心技術。他們的原始數據來源非常廣泛。

他們的數據工廠的核心技術和機密是他們開發的10個基于學習機器的分析模型,對每位信貸申請人的超過1萬條原始信息數據進行分析,并得出超過7萬個可對其行為做出測量的指標,而這一過程在5秒鐘內就能全部完成。

事實上,在美國,征信公司或者大數據挖掘公司的產品不僅用于提供給相關企業用于降低金融信貸行業的風險,同時也用于幫助做決策判斷和市場營銷,后兩者不在本文的探討范圍內,但是可以從另一個方面給我們很多啟發。

推薦閱讀

p2p十大理財產品排行榜-

p2p十大理財產品排行榜?第一名:陸金所第二名:宜人貸第三名:紅嶺創投第四名.....

網絡借貸平臺怎么樣

網絡借貸平臺怎么樣?-----隨著近一兩年網絡借貸逐漸興起并被草根階層所接受,那...

民間借貸暗含陷阱委托合同被判...

nul...

網絡借貸平臺哪家好?如何選擇...

網貸平臺以及挑選一個好的網貸平臺的分析。首先是風險控制要嚴謹,對于理財人雖說財富...

12%家庭擁有小微企業三成參...

中國家庭金融調查與研究中心主任、西南財經大學經濟學院院長甘犁今日公布的中國家庭金...
各國貨幣融資租賃貴金屬證券公司期權交易貸款知識期貨公司金融知識銀行理財產品銀行網點信用卡信托產品
  • 熱線電話(服務時間 09 : 00 - 21 : 00 )
  • 400-680-8888
  • 關注我們
Copyright ? 2015 你我貸(www.ubxxe.club) 網上投資理財 版權所有;杜絕借款犯罪,倡導合法借貸,信守借款合約
關注你我貸官方微信
qq炫舞2
真人麻将玩真钱 推倒胡8大口诀 中国甲级联赛 长春科乐麻将下载安 基金理财平台排行 湖北快三号码表 股票交易软件 河南快三遗漏 华盛配资 棋牌下载 广东推倒胡好友房 期货配资找象泰配资信用高go 快3走势图今天快3 德宏信托 世界十大著名球队 三人麻将打法